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1. Title: "ONR C-IED STIFLE (Stigmergic Tracking of IED Factories, Locations and 
Events)" 

2. Prime Offeror: TechTeam Government Solutions, Inc. (previously Altarum Institute) 
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(a) Dr. Keith Decker, University of Delaware 
(b) Dr. Robert Savit, Savit Research Associates and University of Michigan 
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5. Submitted by: Dr. Sven Brueckner, 734-302-4683, sven.brueckner(a>newvectors.net 
6. Business Contact: Annie Smallwood, 734-302-4736, annie.smallwood(a>,newvectors.net 

7. Background/Scope of Effort 

Factories, deployment locations, and detonation events associated with lEDs (improvised 
ex-plosive devices) are not random, but are constrained by a wide range of environmental 
features, including the locations and movements of likely targets, security patrols, friendly 
civilians, military and police facilities, and other factors that are subject to change over time. For 
instance, experience shows that disciplined patrols can reduce IED emplacement. 

STIFLE (Stigmergic Tracking of IED Factories, Locations, and Events) allows Navy and 
Marine forces to visualize the effects such features will have on IED placement. It uses a multi- 
agent simulation to model the interaction of insurgents, targets, patrols, and other factors of the 
battlespace that affect IED manufacturing, placement, and distribution. This allows prediction of 
likely IED factory areas, locations, and events. 

8. Summary/Abstract 

The STIFLE project, funded by the ONR Counter-IED Basic Research program, has 
three major objectives, which are reflected in the three main tracks of our project execution: 

1. "Enhanced Representations" Track: Extend the predictive polyagent modeling 
construct to include explicit reasoning over task execution by individuals and groups 

2. "Model Analysis" Track: Develop theoretical, formal and experimental analysis tools 
and methods to characterize and influence the dynamics of predictive polyagent models 

3. "IED Prediction Prototype" Track: Apply the extended modeling and analysis 
capabilities to the problem of IED prediction and forensics 

Towards the first objective, collaborated with Prof. Keith Decker (University of 
Delaware) to integrate our polyagent modeling approach within the TAEMS framework, a formal 
representation and reasoning mechanism for hierarchical task networks. Together with Prof. Bob 
Savit (University of Michigan), we explored various approaches to formally describe and analyze 
our predictive polyagent models in support of the second objective. Finally, our development and 
experimental analysis of alternative polyagent models of IED emplacement (based on initial 
models and a framework supported by the DARPA RAID adversarial reasoning module) 
supported the third objective. 

9. Technical Contents and Accomplishments 

The accomplishments for each of the three project tracks are described in the following 
sections. 
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9.1    IED Prediction Prototype Track 
We developed a baseline IED 

emplacement risk prediction model that 
under ONR C-IED funding, building on 
the software infrastructure initially 
developed in the DARPA RAID program 
under the ARM-N module. In summary, 
the model deploys swarms of fine-grained 
agents that move probabilistically on a 
multi-pheromone landscape. The agents 
carry a parameterized personality model 
that determines their response to particular 
pheromone flavors. These flavors are 
representative of the recent (relative to the Figure 1. Baseline IED prediction model integrates 
overall amount of history available to the        over all events in a given time window. 

prediction engine) local presence of Blue convoys (attractive), patrols (repulsive), or IED 
events (attractive) - see Figure 1. An additional flavor used by these agents conveys a 
statistical long-term assessment of the level of IED threat (attractive) at a particular 
location. The spatial distribution of the agent population that results from the individual 
integration of these pheromone flavors in the agent's personality model is interpreted as a 
map of the risk of IED emplacement. 

We call this model of agent-based IED prediction the "synchronic" model, 
because it does not incorporate a polyagent-based prediction of the evolution of the world. 
Instead it is based on probabilistic agents that are synchronously reasoning about the 
same world state. This model is our baseline to measure improvements that we may 
achieve in the deployment of more sophisticated polyagent models and techniques 
developed with the support of the STIFLE project. 

In this period of performance, we have performed some experiments with the 
synchronic baseline model, using real-world and synthetically generated data from the 
DARPA RAID program. In the following, we first discuss the metric that we are applying 
and then we present some results. 
9.1.1      Normalized Coverage Ratio & Receiver Operating Characteristics (ROC) Curves 

We order a sequence of past IED events chronologically, and choose a point to 
divide it into training and test data. All of the training data comes before all of the test 
data. Varying the point of division enables us to explore how our accuracy varies with the 
amount of training data we have available. Note that the entire body of historical data, 
both the training segment and the test segment, implicitly includes information on Blue 
movements, since we only discover IEDs in areas that 
Blue has visited. 

We apply the baseline system to the training data, 
yielding a threat map that may be compared with a 
mountainous landscape. Figure 2 shows a notional threat 
landscape. 

We turn this landscape into threat regions by 
applying a threshold and reporting the contours of the 
landscape at that threshold. Very high thresholds yield 

Figure 2. Notional Threat Landscape. 



ONR C-IED STIFLE Final Report 

4000 f .6 

3500 

* 

3000 
0 

2500 

5000 5600 6000 6600 

Figure 3. Threat regions with threshold 
at 60%. 

only a few regions (Figure 3). As the threshold drops, the 
number of regions will vary, increasing as new peaks are 
exposed and decreasing as previously distinct peaks 
merge (Figure 4), until at threshold 0 we have only one 
threat region, covering the entire playbox. For any given 
threshold, we can compute the coverage percentage, pc, 
the percentage of the playbox occupied by threat regions. 
This percentage will increase from 0% at 100% threat 
threshold to 100% at 0% threat threshold. 

For any given threshold, we also compute the 
prediction percentage, pp, which is the percentage of test 
data events that are included in our threat regions. 

If our predictions are random, we expect pc = pp. 
Good predictions will result in pp > pc. For example, in a 
recent experiment, threat regions that cover only 13% of 
the playbox capture 31% of the threat. 

We can report these results in two ways. 

1. The statistic pp/pc - 1 will be greater than zero for 
good predictions, and approach 0 for random 
predictions. It is theoretically possible for this value 
to be less than zero, but in that case there is in fact 
information in the predictions that is being misused, 
and could in principle be analyzed to yield an 
improved prediction. This statistic is a point estimate, 
valid only for a single threshold. 

2. We can summarize the performance of a predictor over a range of thresholds by 
plotting pp as a function of pc. Figure 5 shows how we can summarize this graphically. 
The diagonal line shows the points where pc = pp. Curves a and b are two different 
predictors. Curve a reflects the preferred predictor, because the statistic pp/pc - 1 is 
greater than on curve b for every value of pc. We can compute such a curve by 
sweeping through the thresholds from 0% to 100%. 

It may be helpful to compare this second result with the ROC (Receiver Operating 
Characteristics) curves often used in analyzing sensors1. Such a curve plots the true 
positive rate (true positives / total positives) against the false positive rate (false positives 
/ total positives). As noted above, we do not possess the data to compute such a curve, but 
the interpretation of the curve is the same as in Figure 5. A random predictor (or sensor) 
has a curve close to the diagonal, and the more rapidly the curve rises, the better the 
predictor/sensor. 

4000 • #»3 
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CN 

3000 i? 
2600 0 

5000 5500 6000 6600 

Figure 4. Threat regions with 
threshold at 30%. 

J. A. Swets, R. M. Dawes, and J. Monahan. Better Decisions through Science. Scientific American, 
vol. 283, pages 82-87, 2000. 



ONR C-IED STIFLE Final Report 

_». • ^—• "^—? 
Q. 
« /         /^ 

f / b^    / 
s 
I 
c //y o 
•E / /.'''' 1/ 

Coverage Percentage Pe 

Figure 5. Response Curve. 

To further quantify the performance of the IED 
prediction prototype with respect to a Random predictor, we 
added +/- 2 sigma lines around the Random line. To 
generate these lines, we modeled our evaluation procedure 
using a Binomial Distribution. We have N independent 
repetitions of a simple success-failure experiment where N 
is the number of future IEDs we are comparing against our 
predictions. A success is the event that an IED placed at 
random within the Area of Interest falls inside a threat area. 
The probability of success under a random trial in this case 
is the ratio of the sum of the areas of the threat regions to the 
area of the overall Area of Interest. 
9.1.2 Evaluation Data 

We considered two sets of data. The first set comprised of three synthetic test 
messages created by Alion (http://www.alionscience.com/) as part of DARPA RAID 
ARMN evaluation trials. The test messages were 

e    DRMsg 1 _9_Past_E vents and DRMsg 1 _8_Future_Events 

e    DRMsg2_l lPastEvents and DRMsg2_10_Future_Events 

e    DRMsg3_12_Past_Events and DRMsg3_l lFutureE vents 
The second set of data comprised 87 actual IED events (obtained through DARPA 

RAID program) that happened in Baghdad province over a period of few months. The 
data included date, time, location and zone of the IED event. A zone is defined as city, 
town or village where the IED event occurred. The data did not contain any information 
regarding Convoys or patrols. Following were the test cases considered: 

Independent of the zone split the test data into two files - 
AllZonesPastE vents and AllZonesFutureEvents. Three different pairs of split files 
were considered 

e    All_Zones_41 PastEvents and All_Zones_46_Future_Events 

e    All_Zones_7 lPastE vents and AllZonesl 6_Future_Events 

e    All_Zones_79_Past_Events and All_Zones_8_Future_Events 
9.1.3 Results 

This section includes snap shots of the ROC curves along with a table containing 
information on Normalized Coverage Ratio for a fixed threshold value. ROC curves 
display the Random Predictor line along with its +/- 2sigma lines and the scores from 
running the IED prediction prototype with the baseline synchronic model. 

DRMsgl_9 Past Events input to DRMsgl 8_Future Events 

Number of Likelihood 
Regions 

100 

Likelihood Region Threshold 0.8 
Number of Future IEDs 8 
IEDs covered by a region 3 
IEDs within 50.0m of a region 4 
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Total Area of Regions 4.171 km2 

AreaofAOP 22.794 km2 

Percentage Area Covered 18.3% 

FICP Score 0.375 
FICP-A Score 0.306 
Random is better 0.0420 

Random is worse 0.8331 
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DRMsg2 11 Past Events and DRMsg2_10_Future Events 

Number of Likelihood 
Regions 

100 

Likelihood Region Threshold 0.8 
Number of Future IEDs 10 
IEDs covered by a region 1 
IEDs within 50.0m of a region 5 
Total Area of Regions 3.322 km2 

AreaofAOP 20.679 km2 

Percentage Area Covered 16.1 % 

FICP Score 0.100 
FICP-A Score 0.084 
Random is better 0.4942 

Random is worse 0.1726 
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DRMsg3_12_Past_Events and DRMsg3_l 1 Future Events 

Number of Likelihood 
Regions 

100 

Likelihood Region Threshold 0.8 
Number of Future IEDs 11 
IEDs covered by a region 1 
IEDs within 50.0m of a region 4 

Total Area of Regions 3.099 km2 

Area of AOP 24.062 km2 

Percentage Area Covered 12.9% 
FICP Score 0.091 
FICP-A Score 0.079 
Random is better 0.4236 
Random is worse 0.2195 
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AH_Zones_41_Past_Events and All_Zones_46_Future_Events 

Number of Likelihood 
Regions 

100 
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Likelihood Region Threshold 0.8 

Number of Future IEDs 46 
IEDs covered by a region 5 

IEDs within 50.0m of a region 16 

Total Area of Regions 0.617 km2 

AreaofAOP 11.53 km2 

Percentage Area Covered 5.4 % 

FICP Score 0.109 

FICP-A Score 0.103 

Random is better 0.0351 

Random is worse 0.9017 
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All_Zones_71_Past_Events and All_Zones_16_Future_Events 

Number of Likelihood 
Regions 

100 

Likelihood Region Threshold 0.8 

Number of Future IEDs 16 
IEDs covered by a region 4 

IEDs within 50.0m of a region 11 
Total Area of Regions 3.03 km2 

AreaofAOP 11.53 km2 

Percentage Area Covered 26.3 % 
FICP Score 0.250 
FICP-A Score 0.184 

Random is better 0.4157 

Random is worse 0.3606 
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AZ71-16_ryn 

All Zones 79 Past Events and All Zones 8 Future Events 

Number of Likelihood 
Regions  

100 

Likelihood Region Threshold 0.8 
Number of Future IEDs 
IEDs covered by a region 
IEDs within 50.0m of a region 
Total Area of Regions 5.211 km2 

Area of AOP 11.53 km" 
Percentage Area Covered 45.2 % 
FICP Score 0.750 
FICP-A Score 0.411 
Random is better 0.0186 
Random is worse 0.9098 

AZ7M_«yn 
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9.2    Enhanced Representations Track 
9.2.1 Introduction 

A domain for which higher levels of cognition are often considered necessary is 
coordination in the execution of complex tasks. For example, tests and treatments on a 
hospital patient can be represented in a treatment plan, which has both internal 
coordination relationships (some tests must be done in a particular order or within certain 
time limits) and external coordination relationships between treatment plans (only one 
MRI machine exists; certain ancillary hospital units prefer to run similar tests in batches 
to reduce set-up times, etc.) [4]. Another example is the on-line coordination of pre- 
planned activities in dynamic environments such as military, law-enforcement, or disaster 
planning scenarios [3]. Several law-enforcement units may wish to surprise suspects at 
different locations nearly simultaneously so they cannot warn each other. Besides 
coordinating the surprise itself, some units may require equipment or information whose 
delivery time is not known in advance. The structure of such tasks can be represented as a 
graph, specifically, a Hierarchical Task Network or HTN. 

All of these types of scenarios have been typically approached by building 
systems where complex agents have an internal representation of their own plans (and 
how they relate to the plans of other agents). Examples include CSC agents [6], or 
unrolling each agent's view of the HTN into a Markov decision process over which MDP 
techniques can be applied [7], or translating it into a Simple Temporal Network and 
applying STN techniques [10]. 

We take a radically different approach. Rather than putting the HTN inside of 
complex agents, we put swarming polyagents inside of the HTN. Coordination is 
achieved, not by conventional inter-agent dialogs based on each agent's individual 
analysis of the HTN, but by means of interactions among the agents mediated by the 
structure of the HTN itself. This paper demonstrates this approach by showing how 
swarming polyagents can operate on an HTN. Specifically, we work with a dialect of the 
TAEMS task language [5] that emphasizes the importance of resources, both real and 
virtual, in coordination (thus resource-TAEMS or rTAEMS). What sets this model apart 
from other (self-organizing) scheduling and execution approaches is that it includes in its 
reasoning semantic representations of method-execution preferences that require the 
coordination of multiple entities. 
9.2.2 Background 

In this section we first summarize the rTAEMS HTN modeling approach, 
introducing the key terms that define the topology in which the swarming agents operate. 
Then we briefly introduce our polyagent modeling construct, which uses swarms of 
simple agents that project specific aspects of the system state into the future for informed 
decision making. 
9.2.2.1      Resource TAEMS (rTAEMS) 

A hierarchical task network (HTN) is a collection of events, together with two 
kinds of relations among them: a hierarchical structure relating tasks to their subtasks, 
and other relations constraining the order of execution among the tasks. In this paper we 
focus on the Resource-TAEMS (rTAEMS) dialect of TAEMS as a specific instance of an 
HTN formalism [1,5]. For a more detailed introduction and motivation of rTAEMS we 
refer the reader to [8]. 
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Figure 6. A simple rTAEMS 
graph linking two real-world 
actors (shaded areas under M 
and Q). 

Figure 1 shows a simple example of an rTAEMS graph. 
The circles ("Q") are tasks and subtasks that may be associated 
with one or many actors in the real world (two shaded areas), 
and can be subdivided into lower-level activities. Since they 
also serve as the hosts of the quality accumulation process, we 
call these rTAEMS nodes "quality" nodes. The rectangles 
("M") are "method" nodes, which are the lowest level of 
activity. Each method is associated with a single actor and 
provides a statistical representation of the execution behavior of 
this activity (e.g., duration, deadlines). Finally, the triangles 
("R") are the "resource" nodes that are emphasized in the 
rTAEMS dialect over the traditional TAEMS specification. 

The primary purpose of the rTAEMS graph is to coordinate the activities of 
various actors to maximize overall quality achievement while adhering to any method 
ordering and timing constraints. The ordering constraints are imposed by the R nodes in 
the graph. Those nodes carry a non-negative abstract resource level. Methods that start 
execution consume a given amount of resources from R nodes that have incoming links 
to the M node. Methods can only start if the resource levels on the incoming R nodes are 
sufficient for consumption of the specified amounts. When methods complete, they 
produce a given amount of resources on R nodes that have incoming links from the M 
node. The actual amount of resources consumed and produced is defined as static 
annotations to the R-to-M (consuming) and M-to-R (producing) links. Timing constraints 
associated with a particular M node may further limit the time window in which the 
method may be started. 

When methods complete, they produce also a given amount of quality for Q nodes 
that have incoming links from the M node. Similar to R nodes, Q nodes carry a non- 
negative abstract quality level. In addition, any Q node defines a quality accumulation 
function (QAF) that combines the quality levels on all incoming links (M and Q nodes) 
into this node's quality level. That quality level is then used as an input to the QAF at the 
node's parent, and so on. The current quality achieved by the actors is defined as the 
current quality level at the root of the Q node hierarchy. 
9.2.2.2      Polyagents Modeling Framework 

For a more detailed introduction to polyagents, we refer the reader to [9]. The 
"poly" in "polyagent" reflects the fact that each relevant domain entity is represented by 
multiple agents: a single avatar and multiple ghosts, combining structured self-organizing 
swarms (ghosts) that explore large search spaces with classical reasoning approaches 
(optional) in the avatar. Avatars and ghosts differ in four ways. 

Multiplicity: Each entity has only one avatar, but may have multiple ghosts 
existing concurrently. 

Scope: An avatar persists as long as the entity it represents. Ghosts are transient. 
They are continually generated by an avatar at a specified rate, and they die off after a 
specified period or upon some specified event. 

Reasoning: The avatar may use complex symbolic reasoning, and may 
communicate directly with other avatars. Ghosts are stigmergic, or ant-like. They 
independently explore alternative paths and coordinate their actions only indirectly, 
through changes that they make to a shared computational environment. The most 
common mechanism for ghost interactions with each other and with the avatars of other 
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Figure 7. Polyagents and Temporal 
Pheromones on the rTAEMS Graph 

entities is through digital pheromones, scalar variables 
that the agents deposit and sense in the environment. As 
a result, ghost reasoning is a simple and rapid numerical 
computation over their behavioral model and the 
pheromone strengths in their vicinity. Traditionally, the 
topology of the space over which the ghosts swarm is a 
representation of the geo-spatial aspects of the domain. 
In this paper, we are demonstrating swarming on HTN 
graph representations. 

Responsibility: The avatar's responsibility is to 
maintain a model of the domain entity and predict and 
possibly control its behavior. To that end, it generates 

and tunes a stream of ghosts, whose mission is to evaluate alternative actions and 
possible interactions. The emergent result of the ghosts' reasoning can then be used to 
bias or guide the avatar's actions. 
9.2.3      The rTAEMS Polyagents 

The various polyagents in our model are coupled through external state variables 
and temporal pheromone fields that facilitate indirect information exchanges. The 
pheromone fields are either a probabilistic projection of the state variables into the future 
(e.g., projected levels at resource nodes or quality nodes), or they encode additional 
coordinating information required to generate schedules that are correct (enablement) and 
optimized (quality, deadlines). In our polyagent model, we maintain pheromone fields 
across the entire graph indexed by a positive temporal offset (future) relative to the 
current real-world time (avatar time). As ghosts execute their behavioral model, they 
move through this index of fields from the current time into the future, changing their 
temporal location. 

The manipulation of the pheromone fields by the polyagents' ghosts always 
follows the same pattern: 1) A ghost carries an internal state that reflects their own 
estimate of one or more external state variable. In particular, if the external state variable 
is discrete (e.g., resource level), then the ghost state is discrete as well. 2) The ghost 
samples pheromone fields at its current temporal location and turns pheromone 
concentrations into probabilities over state variables. Using their random number 
generator, the ghost then samples these probabilities to postulate the occurrence of 
particular events that may change its internal state. 3) Based on these events, the ghost 
changes its internal state, emulating the change of external variables. 4) Finally, the ghost 
deposits pheromones at its current temporal location, affecting the event probabilities that 
other ghosts perceive. 

Thus, a ghost emulates a possible evolution of a set of external state variables 
over time and adds this forecast to the probabilistic representation of the state variable in 
the temporal pheromone field. This coupling of polyagents through actual or projected 
state variables allows us to discuss the operation of the polyagent model from the 
perspective of the information flow among variables first (section 9.2.3.1), before 
explaining the specific behavior of the individual agents (section 9.2.3.2). 

Our polyagent model distinguishes "infrastructure" and "execution" polyagents. 
The purpose of the infrastructure polyagents is to provide guiding information for the 
execution polyagents, who in turn construct (ghosts) and execute (avatars) a particular 
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consume R   produce S and C. 

Figure 9. Resource ghosts 
consume 5 and CI produce R. 

method schedule. The infrastructure 
polyagents represent individual nodes 
in the rTAEMS graph and their 
behavior depends on their node type. 
Thus we distinguish "resource" 
polyagents, "quality" polyagents, and 
"method" polyagents. The execution 
polyagents' associated with the rTAEMS graph is less localized. They model the 
behavior of real-world entities that may execute certain methods in the graph. In the 
current implementation, any M node is associated with one particular "entity" polyagent 
(Figure 7). 
9.2.3.1      Abstract Information Flows 

We describe the information flows that maintain a correct and optimized schedule 
for the execution avatars. 

9.2.3.1.1 Correct Schedules 
The entity ghosts decide when to start and complete a method and accordingly, 

they deposit temporal "starting" (S) and "completing" (C) pheromones of the selected M 
node. For correct schedules, the decision whether to start a method depends on the 
availability of resources consumed by the method. These resource levels are derived from 
the "resource" (/?) pheromone concentrations at the resource nodes linked to the method. 
Thus, entity ghosts consume R and produce S and C moving through time (Figure 8). 

The resource ghosts model the evolution of the level of their R node. As a 
resource ghost moves through time, it maintains its discrete estimate of the resource level 
and it deposits this amount of/? pheromones. It modifies its estimate by postulating 
starting and completing events for those methods that consume from or produce to its R 
node. It postulates these events from the observation of the S and C pheromone fields of 
those methods. Thus the resource ghosts consume S and C and produce R (Figure 9). 

Figure 10 shows that entity ghosts affect the behavior of resource ghosts (by 
starting and completing methods) while resource ghosts in turn affect the behavior of 
entity ghosts (by estimating the resulting resource levels). Thus, entity and resource 
ghosts form a stigmergic feedback loop that results in the emergence of correct schedules 
where methods are only executed if sufficient resources are available for their 
consumption. 

9.2.3.1.2 Optimized Schedules 
The stigmergic interaction of entity and resource ghosts in Figure 10 produces 

correct schedules that are not optimized according to the quality accumulation defined by 
the Q nodes of the rTAEMS graph. Also, these schedules do not include optimizations 
that allow high-value methods with early deadlines to be executed 
on time. 

The quality ghosts estimate the evolution of the quality level 
at their associated Q node. That level changes when a method's 
completion adds quality to the node, or when child Q nodes change 
their levels and change the outcome of the quality accumulation Figure 10. Entity ghosts 
function (QAF). and resource ghosts 

v ^      ' form a stigmergic loop 
Like resource ghosts, quality ghosts observe the S and C that results in correct 

schedules. 
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produce Q and TQ.  
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produce QIP. 

pheromone levels on those M nodes 
that provide quality to their node and 
postulate starting and completing 
events. Completing events increase 
the level of quality in the ghost. 
Quality ghosts also observe the 
"quality" (Q) pheromone in their 
node's Q children and estimate their 
current projected quality level. The 
estimated quality levels provided by 
associated M and Q nodes are the 
QAF inputs. The QAF result becomes 
the ghost's new quality level and it 

also determines the amount of Q pheromone that the ghost deposits. Thus, quality ghosts 
consume S, C, and Q and produce Q pheromones (Figure 11). 

The infrastructure polyagents on the Q nodes collectively maintain an estimate of 
the likely evolution of the quality levels based on the projected execution of methods. To 
guide the selection of enabled methods, we need to compare the quality of the projected 
schedule with the total quality that could be achieved. We extend the behavior of the 
quality ghosts to consider the maximum achievable quality of their M node children and 
apply the QAFs. 

The maximum achievable quality of a method depends on whether the method 
was already executed or not. If a quality ghost considers a method completed, then the 
achievable quality is the quality produced. Otherwise, it is the quality that the method is 
projected to achieve (zero in the case of a missed deadline). The quality ghosts consume 
S, C and Q to produce "total quality" (TQ) pheromone deposits (Figure 11). 

From the calculation of the achieved and total quality profile at the Q nodes, we 
compute the quality improvement potential that remains at the M nodes. This calculation 
starts at the root of the quality hierarchy, where the quality ghosts deposit a "quality 
improvement potential" (QIP) pheromone equal to the difference of the Q and TQ values. 
Quality ghosts on all nodes of the hierarchy (including the root) take their local QIP 
value and distribute it to their children according to their respective QAF. For instance, in 
a SUM QAF, the QIP deposits are proportional to the children's TQ contributions. Thus, 
quality ghosts consume Q and TQ at the root and QIP on all nodes and produce QIP at Q 
and M nodes (Figure 12). 

The concentrations of QIP pheromones on M nodes optimize schedules for high 
quality. But, QIP alone results in greedy schedules as it does not account for method 
deadlines. Therefore, method ghosts take the local QIP estimate and combine it with the 
remaining time to the deadline of their method to compute and deposit the method's 
"urgency" (U) pheromone. 

Finally, we want to induce schedules that execute even low-£/P/late-deadline 
methods early if they lead to the enablement of high-^/P/early-deadline methods. Thus, 
we extend the resource ghosts to consume U from their consuming methods and deposit 
U proportionally to their providing methods if their projected resource level is 
insufficient to enable their consuming methods. 
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Figure 13. Information flow 
among the polyagents in the 
rTAEMS graph. 

To produce schedules that are correct in regards to 
enablement and optimized in regards to quality achievement and 
deadline adherence, entity ghosts need to consider the resource 
levels at the enabling resource nodes (R) as well as the urgency 
levels at the method nodes that belong to their entity polyagent 
(U). Figure 13 shows the entire information flow among the 
infrastructure and execution polyagents within the topology of 
the rTAEMS graph. 

There are two ways that coordinating information flows 
from the future into the decision process of the entity polyagent. 
Implicitly, the QIP calculation assumes the eventual execution 
of methods in the total quality estimate. Explicitly, the urgency 
calculation assesses upcoming deadlines and the propagation of 
urgency by the method and ghost agents move that measure 
further upstream. 
9.2.3.2      Specific Agents 

Now we discuss the operation of the various polyagents 
in detail. We start with the ghost logic that maintains a schedule forecast for the near 
future and then describe its execution by the avatars. We present the ghost and avatar 
operation in sequence, but in reality those two agent types operate in parallel at different 
time scales (many ghost cycles between any two avatar cycles). First, we discuss how 
entity and resource ghosts form a correct schedule. Then we include the remaining ghost 
types to maintain optimized schedules. 

9.2.3.2.1     Correct Schedules 
Correct schedules emerge in the stigmergic interaction between swarms of entity 

ghosts and resource ghosts. 

9.2.3.2.1.1      Entity Ghosts 
An entity polyagent represents a particular real-world actor capable of executing a 

given set of methods. These methods are modeled as M nodes in our rTAEMS graph. The 
ghosts maintained by the entity avatar establish a correct and optimized schedule in 
collaboration with ghost swarms from other entity polyagents and supported by the 
ghosts of the infrastructure polyagents. 

Following the general polyagent modeling paradigm, the entity avatar 
continuously creates entity ghosts at a fixed rate. Upon creation, entity ghosts copy 
relevant aspects of the current avatar state into their own state and are placed on the 
temporal location that corresponds to the current real-world time of the avatars. Then, 
with each ghost decision cycle, the ghost advances one discrete time step into the future 
until it reaches the model's forecast horizon. There it ceases to exist. 

The initial state of an entity ghost comprises the execution history and the current 
execution state (what, if any, method is being executed now) of its avatar. With each 
decision cycle, the entity ghost advances this state by choosing to execute methods from 
its set of M nodes. 
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entity ghost step at time t 

Is t larger than forecast horizon? 

leave polyagent model 

Ami currently executing a method? I 

¥**! w Hasmy method execution reached projected duration? 

continue method execution until next ghost step 

complete method execution (deposit C on method) 

enumerate set of available methods 

score all available methods 

probabilistically select from available methods based on score 

start method execution (deposit S on method, project duration) ]— 

Figure 14. Entity ghost decision cycle. 

Figure 14 shows the basic 
decision cycle for an entity ghost. It 
first checks whether it has passed the 
forecast horizon. If not, then the ghost 
asserts whether it is currently in the 
process of executing a method. In that 
case, the ghost needs to decide 
whether it should consider the method 
completed or whether it should 
continue executing the method until 
its next decision cycle based on an 
internal duration counter set at the 
start of the method. If the counter 
reaches zero, the ghost deposits a unit 

amount of C pheromone at the method's node in the field indexed with its current time t. 
To select a new method, the ghost iterates over all M nodes of its entity and 

assesses their current availability. The ghost considers a method available, if it has not 
been executed before by either its avatar or by itself (c.f. re-entrant methods in Future 
Research 9.2.4.1). Furthermore, the availability of a method also depends on its 
enablement by R nodes. To determine method enablement, the ghost samples the R 
pheromone on each providing R node and probabilistically estimates its current resource 
level. This determination is made under the assumption that the pheromone level is in 
steady state based on regular deposits by resource ghosts (c.f. [2] for detailed analysis of 
pheromone dynamics). The method is considered enabled, if the sampled resource levels 
for all enabling resources are above their respective minimum enablement threshold. 

If the resulting set of available methods is empty, the entity ghost just pauses for 
this decision cycle. Otherwise, it selects a method from that set with uniform probability. 
Marking the start of the method, the ghost deposits a unit amount of S pheromone on the 
M node and initializes its method duration counter by sampling the method duration 
distribution from the node's configuration. 

9.2.3.2.1.2      Resource Ghosts 

We assign a resource polyagent to each R node in the graph. The resource ghosts 
collectively estimate the evolution of the level of their R node from the current actual 
level to the model's forecast horizon. This collective estimate is reflected in the R 
pheromone concentrations on the node, which are sampled by the entity ghosts to decide 
on a method's enablement state. 

A resource ghost carries a discrete resource level. As the ghost is created by its 
resource avatar, this value is set to the current actual resource level. Also at initialization, 
the resource ghost determines for each producing or consuming method, whether this 
method is currently being executed by an entity avatar. 
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Figure 15 shows the basic decision cycle for a resource ghost, beginning with the 
check for the model's forecast horizon. The ghost iterates over all providing M nodes. 
For each such node, it samples S and C pheromones levels, and estimates the probability 
that this method is starting or completing at this time. Depending on whether the ghost 
expects the method to start or complete next, the ghost either uses a probability derived 
from 5 or C to postulate these starting or completing events. If the ghost postulates a 
completing event for a producing method, it increments its internal resource level by the 
amount produced by that method. 

After handling possible increments, the resource ghost considers all consuming 
methods and again postulates starting and completing events. Here the ghost decrements 
its resource level upon starting events by the amount consumed by the respective method. 

It is important to note that the resource level of a particular ghost is permitted to 
drop to negative values even though the actual resource level of the node never falls 
below zero. Prohibiting these forbidden states would otherwise artificially constrain the 
statistical variations that the current method execution patterns may produce. 

The ghost completes its decision cycle by depositing R pheromones equal to its 
new resource level onto its node into the field indexed with the ghost's current time. 

9.2.3.2.2     Optimized Schedules 
The stigmergic interaction between entity and resource ghosts leads to the 

emergence of correct schedules. The feedback loop between the execution decisions of 
the entity ghosts and the resource level estimates produced by the resource ghosts ensures 
that only those methods are executed that have a high likelihood that sufficient resources 
for consumption are available. In fact, the entire space of correct schedules is accessible 
as any correct execution choices may be explored. 

Now we show how the infrastructure ghosts process quality accumulation and 
deadline information to provide additional guidance for the entity ghosts to select 
optimized schedules from the correct ones. 

9.2.3.2.2.1       Quality Ghosts 
The hierarchy of Q nodes with M nodes at the leaves specifies the accumulation 

of method-produced quality up to the root of the rTAEMS graph. The quality at the root 
is the overall performance measure applied to the team of actors whose actions and their 
interdependencies are modeled. The quality ghosts estimate the evolution of quality 
levels at each Q node to the forecast horizon and use this estimate to guide the entity 
ghosts to execution decisions that 
have the highest potential to improve 
the root-level quality. 

Quality ghosts are very similar 
to resource ghosts. They carry a level 
measure for their node (quality instead 
of resource), and this level is 
initialized from the current level at 
their node. If the Q node receives 
direct contributions from M nodes, the 
quality ghosts postulate starting and 
completing events for these methods 

resource ghost step at time t 

Is t larger than forecast horizon? 

leave polyagent model 

For each producing method mP 

nil 
1Y« > 

Is mp completing at this time? 

increment my resource level by amount produced by mp 

For each consuming method mc 

1 
yes 

Is mc starting at this time? 

decrement my resource level by amount consumed by mc 

deposit my resource level into R pheromone 

Figure 15. Resource ghost decision cycle. 
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from the S and C pheromones and increase their internal quality level for any completed 
providing method. 

In contrast to a resource ghost, the internal level of a quality ghost is not just 
determined by the quality production of associated methods. Instead, the ghost's Q node 
may also have other Q nodes as children. There the ghost probabilistically derives the 
currently predicted quality level from their Q pheromones. The ghost uses the estimated 
method quality contributions and the child Q node levels as input into its QAF. The QAF 
result determines the current quality level of the ghost and the ghost deposits Q 
pheromones of this amount into its Q node. 

As discussed in section 9.2.3.1.2, quality ghosts also estimate the accumulation of 
total quality that can be achieved at their respective node. The mechanism for the creation 
of TQ pheromone fields is very similar to the Q pheromone generation. For TQ the 
quality ghost tracks the execution of the providing methods through the S and C 
pheromones but postulates total quality production as long as the method has not passed 
its deadline without being completed. Using its node's QAF, the quality ghost combines 
achievable quality of its providing methods with probabilistically determined TQ levels 
of any child Q node. It deposits the resulting total quality level as TQ pheromones on its 
node. 

With the Q and TQ fields established by the quality ghosts, we now have 
sufficient information about the possible improvement of the overall root-level quality. 
The quality ghosts of the root node deposit the quality QIP pheromone as the current 
difference between their Q and TQ levels. All temporal QIP fields below the root node 
are maintained by the quality ghosts of the parent node. These ghosts sample the QIP 
pheromone at their own node and distribute that value as QIP deposits to their children 
according to the local QAF. For instance, if the QAF at the parent is a SUM or a MAX, 
then the parent's QIP is distributed to the children proportionally to the difference 
between Q and TQ at the respective child. Thus child nodes that still offer the largest gain 
in quality get assigned the largest quality improvement potential. Other QAFs, like for 
instance a MIN, trigger an inverse proportional distribution of the parent's QIP. 

The distribution of parent QIP to child nodes of a Q node does not distinguish 
between Q node and M node children, distributing the root QIP to down individual 
methods. Thus, the combined operation of all quality ghosts maintains a quality 
improvement potential profile starting at the current avatar time out to the forecast 
horizon, identifying which methods (if enabled and executed) may provide the largest 
gains for root-level quality. 

9.2.3.2.2.2      Method Ghosts 
In scenarios without deadlines, QIP alone would be sufficient to guide the entity 

ghosts towards an optimal schedule. In this case, entity ghosts may just greedily pick 
methods that offer the largest QIP and fill in any remaining smaller quality gains later. 
But if these low-gain methods are associated with a deadline, then they should be 
executed earlier than high-gain methods with later deadlines. Therefore it is necessary to 
combine the QIP information of a method with any deadline associated with the method 
to determine the urgency with which the method should be selected if it is enabled. 

The method ghosts perform this simple calculation. Their internal state 
accumulates the likelihood that their method has been started at or before their current 
ghost time. If the entity avatar already started the method, then the ghost's starting 
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method ghost step at time t 

Is t larger than forecast horizon? 

JSL> leave polyagent model 

sample S and update accumulated starting probability 

estimatemethodQIP at t from QlPpheromone 

calculate urgency from QIP, inverse deadline, and 
accumulated starting probability 

depositurgencyintoU pheromone 

Figure 16. Method ghost decision cycle. 

Figure 17. Urgency 
"propagation" by resource 
ghosts. 

estimate is 100% 
right from its 
initialization. 
Otherwise it 
accumulates 
starting 
probabilities 
sampled from the S 
pheromone field in each method ghost step. 

In each decision cycle (Figure 16) the 
method ghost samples its local QIP level and 

divides it by the time that remains until the deadline or the forecast horizon (whichever 
comes first). It then multiplies this value with 1 - accumulated starting probability - the 
likelihood that the method is not yet started. The resulting urgency measure grows with 
increasing quality improvement potential, with an approaching deadline, and with 
decreasing starting probability. The method ghosts deposit this urgency value into the U 
pheromone field. 

9.2.3.2.2.3 Resource Ghosts 

One final step in the urgency calculation is necessary to ensure that methods with 
high indigenous urgency (close to deadline, high QIP, low starting probability) get 
enabled by upstream methods in time even if these predecessor methods themselves have 
low indigenous urgency. In effect, we want to selectively "propagate" urgency upstream 
along the method enablement relationships expressed by the R nodes between them. 

We extend the behavior of the resource ghosts beyond our initial description. 
After completing the operations associated with the creation of correct schedules, a 
resource ghost sums up the urgency of consuming methods that currently have 
insufficient enablement by their providing resources. Each such urgency value is 
weighted with the resource level that the respective method would consume from the 
ghost's resource. The resulting "resource urgency" value is then distributed (U 
pheromone deposits) proportionally among all providing methods according to the level 
of resource they would be contributing. The temporal index of these deposits is offset by 
the duration of these methods, increasing the urgency to start these methods in time. 

9.2.3.2.2.4 Entity Ghosts 

In the previous sections we showed how the ghosts of the infrastructure 
polyagents create a rich information environment across space (rTAEMS graph) and time 
(up to the forecast horizon) based on global quality improvement potential and method 
deadlines resulting in localized urgency fields at the method nodes. Now we discuss how 
the entity ghosts take this information into account when making their execution 
decisions. 

The summary of the entity ghost decision cycle in Figure 14 already includes the 
necessary steps: "score all available methods" and "probabilistically select method based 
on score". To create correct schedules it was sufficient to select among the available 
methods randomly. With method urgency information available, the entity ghost scores 
its available methods by their U pheromone concentrations. Thus, methods with higher 
urgency have a higher likelihood of being executed. 
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entity avatar step at time t 

— Ami currently executing a method? 

Has my method execution reached projected duration? 

continue method execution until next avatar step 

complete method execution (produce resources and quality) 

enumerate set of available methods (truly enabled by resources) 

sample starting probability from S at time t for all such methods 

select from available methods by highest starting probability 

start method execution (consume resources, project duration) 

Figure 18. Entity avatar decision cycle. 

Methods that have an urgency 
of zero will not be executed since they 
neither contribute additional quality 
themselves nor enable other methods 
that may provide quality. Thus it is 
possible that even though methods are 
enabled for a particular entity ghost, 
the ghost may still decide not to 
execute anything. This is a desirable 
behavior as it allows entity polyagents 
to ignore unproductive methods. 

9.2.3.2.3      Executing Schedules 

We had mentioned before, that in the general polyagent model, the avatar may be 
the host of complex (cognitive) reasoning process about its entity. For the rTAEMS 
model presented in this paper, such complex reasoning is not necessary, because already 
the infrastructure and execution ghosts collectively maintain a correct and optimized 
schedule in the distribution of S and C pheromones on method nodes. Thus, all necessary 
reasoning about which (if any) methods should be actually executed next by the entity 
avatars is performed by the swarming ghosts of the system. All an entity avatar has to 
do now in its decision logic is to exploit the guidance that is generated by the exploration 
of the information landscape by its ghosts. 

The entity avatar (Figure 18) executes similar decision logic as an entity ghost 
(Figure 14) in regards to its overall execution behavior. If, in a particular decision step, it 
is already executing a method, it decreases its method duration counter and completes the 
method if the counter reaches zero. If the avatar is ready to select a new method for 
execution, establishes a set of available methods. It is up to the entity avatar to ensure that 
its execution remains correct in regards to actual enablement and deadlines of its 
methods. Its ghosts used ^? pheromones to estimate enablement and though it is unlikely 
that this estimate is wrong at the beginning of the forecast window (close to the actual 
system state), entity avatars still have to enumerate their set of available methods based 
on actual resource levels at the enabling nodes and exclude those methods that it actually 
executed before or that have run out of time. 

From the set of available methods, the entity avatar selects the method that has the 
highest starting likelihood (from the Spheromone) at the first ghost cycle. If there is more 
than one such method, the avatar has no further guidance and selects among the 
maximum likelihood methods randomly. If the highest starting probability is still below a 
configurable threshold, then the avatar does not select any method for execution and 
pauses instead until its next cycle. 

In the forecasting component of the polyagent model, entity ghosts do not 
consume or produce resources directly. Instead, resource ghosts observe the starting and 
completing probabilities of their associated methods and maintain the resource-level 
forecast in the R pheromone. Conversely, the execution by the entity avatars constitutes 
the real and irreversible start and completion of methods. Thus, as an avatar starts a 
method, it actually consumes resources (decrements resource levels), and when it 
completes a method, it actually produces resources (increments resource levels) and 
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quality (increments quality levels). As a consequence, the decision process of resource 
avatars is empty. 

While the resource avatars are impoverished in their behavior, quality avatars 
still play an important role. They have to track the actual production of quality by the 
entity avatars and recursively roll those up to the root node of the quality hierarchy. This 
roll-up provides an immediate picture of the currently achieved quality by the polyagent 
system. 

Finally, method avatars simply register the execution of their method by an 
entity avatar to establish the correct initial state of their ghosts. 
9.2.4      Evaluation Experiments 

We report on experiments with our rTAEMS polyagent system. First we discuss 
capability experiments on artificially constructed graphs that highlight particular 
challenges. Then we report on benchmark tests against traditional TAEMS approaches. 
9.2.4.1      Capability Experiments 

Below is a small sample of the various experiments that we performed to test 
agent interaction, fine tune agent parameters, and analyze the scalability of the algorithm 
by increasing the number of avatars and methods. 

9.2.4.1.1 Stepped Deadline Graph (Single Entity Avatar) 
The graph contains ten methods MMO with a common duration of one, producing 

a quality of one each (no quality preferences). Method Mj has a deadline at t=i (stepped 
deadlines). The optimal sequence of method execution by an avatar is highly constrained 
by the deadlines. If any one method is executed out of sequence, a loss of quality is 
observed. 

Without quality preferences, the entity ghosts provide sufficient guidance for the 
avatars to execute the stepped graph flawlessly (see screenshot in Figure 19). But we find 
that differences in quality production may lead to greedy, out-of sequence execution of 
higher-value methods. A tuning parameter that balances the impact of deadlines with the 
preferences expresses by quality production suppresses this greedy behavior to a point. 
But in the case of the stepped graph, the modeler who constructed the fully deadline- 
constrained graph should not have added any conflicting quality preferences. 

9.2.4.1.2 Quality/Deadline balance Graph (4 Entity Avatars) 
As observed in the previous section, higher quality offered by one method may 

overwhelm the urgency to execute another to meet its (or its dependants) deadline. This 
series of experiments demonstrates the existence of a balance point where quality greed 
overwhelms deadline constraints. 

We specify a graph with 4 avatars {A, B, C, D} and their respective two methods 
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Characteristics 
Name #Entities #Methnds #Nodes 
May0ptNLE4 6 12 28 
MayOptContingent3 3 18 43 

Results 
Name Optimal 

Quality 
Mean 

Quality 
Std. Dev. 
Quality 

May0ptNLE4 65 65 0 
MayOptContingent3 66.5 66.5 0 

Table 1. cTAEMS Benchmark Characteristics and Results.       Qf method execution for any avatar is 

Mi before M2. Without the 
aforementioned (9.2.4.1.1) tuning 
parameter, the system is able to 
execute this optimal sequence only for 
avatar A. The other avatars were led 
by their ghosts to execute their second 
method (M[B-D]2) first because of the 

quality improvement potential they were offering. Thus, the deadlines of M[B-D]i were 
reached and their quality contributions lost. 

The tuning parameter affects the contribution of QIP to the urgency of a method 
and thus balances the competing optimization goals of maximizing quality and meeting 
deadlines. Repeating the experiment with a decreased QIP impact, avatar B now also 
executes MB] before MB2, but M[C-D]i still expire. 

These experiments highlight that the designer of rTAEMS graphs must not only 
adhere to the correct syntax of the graph, but must also be aware of the emergent 
dynamics of the polyagent system that resolves competing optimization goals. 

9.2.4.1.3     Stepped Deadline Graph (Scaling Tests) 
To explore the scalability of our polyagent approach, we first increase the number 

of stepped methods (see 9.2.4.1.1) executed by a single entity avatar to 500 (M|.50o, 
dMi=i) and then increase the number of avatars that are associated with the stepped 
methods to ten (alternating avatar-method association Ai={Mi, Mn, M21, ...}, A2HM2, 
M12, M22, •••})• In all cases, our polyagents were able to produce the optimal (stepped) 
execution sequence, naturally with increasing computational cost (linear with #methods, 
#avatars). It is worthwhile to point out that all polyagent interactions in our model are 
local on the rTAEMS graph. Thus, the distribution of this system over many 
computational hosts for a distributed group of coordinating entities is very straight 
forward. 
9.2.4.2      Benchmark Experiments 

In order to compare our polyagents' performance with related work, we 
experimented with two cTAEMS task networks taken from the May, 2007 evaluation 
trials of the DARPA COORDINATORS program (K. Decker, personal communication). 
The task networks used in these trials were intended to be simple enough to be solvable 
by an optimal cTAEMS algorithm, while still being complicated enough to evaluate and 
compare the performance of non-optimal, heuristic solvers. 

The two networks chosen were "MayOpfNLE4" and "MayOptContingent3" 
(Table 1). We converted the original cTAEMS networks into equivalent rTAEMS 
networks, preserving semantics and resulting quality. Accounting for the probabilistic 
nature of our approach, we executed 25 replications of each network with a different 
random seed. The results in Table 1 show that our approach achieved optimal results. 
9.2.5      Conclusion and Outlook 

Typically, swarming and even polyagent applications place their agents in shared 
computational environments with geographic topologies. These metric and reasonably 
continuous spaces provide the agents with sufficient space to explore alternative 
trajectories with minor variations where the non-linear dynamics of the agent system 
amplifies these variations when they offer improvements to the system's performance. 
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We demonstrated here how swarming agents may be deployed on the non-metric and 
discontinuous topology of a process graph, using the metric and continuous temporal 
domain and the distribution of numeric resource and quality levels as the source for those 
minor variations that are essential to the adaptiveness of self-organizing algorithms. 

We align our research with traditional Artificial Intelligence approaches and focus 
on Hierarchical Task Network (HTN) descriptions of the constraints and preferences in 
the execution of abstract methods by a group of entities. In particular, we adapt the 
TAEMS representation for HTNs to place a greater emphasis on the mediation of 
method-execution through shared resources and collectively achieved quality (stigmcrgic 
coordination). On the rTAEMS graph representation of methods that are enabled by the 
availability of resources produced by other methods and whose execution produces 
quality that is aggregated to a system-level quality achievement, we place "infrastructure" 
polyagents on each node that project the evolution of the state of their node forward in 
time. The entities that are using the rTAEMS graph to coordinate their activity are also 
represented by polyagents, driving through their projected and actual execution of 
methods the evolution of the infrastructure agents. 

We discussed in detail the population-level dynamics of the complex polyagent 
system on rTAEMS, specified the decision logic of the agents that make up the swarming 
component of the polyagents ("ghosts"), and reported on capability and benchmark 
experiments. We were able to show that our polyagent approach to scheduling and 
execution of HTNs is capable of achieving optimal performance while offering the ability 
to dynamically reschedule to adapt to changing environments and to distribute the 
process among multiple hosts associated with the coordinating entities. (Due to the 
stochastic nature of the algorithm, optimal performance cannot be guaranteed on more 
complicated problems.) 

The ONR CIED STIFLE project has come to an end. But in a related project, we 
are now extending the rTAEMS polyagent system in several directions. We are 
expanding the applicability of the rTAEMS process model by supporting the execution of 
a method more than once (re-entrant methods) and potentially by different entities 
(shared methods). Also, to model opposing "sides" among the entities for instance in 
war-games, we allow rTAEMS graphs to have more than one quality root. 

The main extension comes from the specialization of the methods. In the 
rTAEMS version reported in this paper, a method is characterized by abstract attributes 
such as its duration or deadline and we assume that the method always concludes 
successfully (producing quality). The specialized method nodes will include a detailed 
execution model that simulates the execution of the method in a geo-spatial model. From 
that simulation, we derive dynamically the expected duration of that method and the 
amount of quality it produces. Thus, methods could have varying duration and success 
depending on the spatial context in which they are executed. 

9.3     Model A nalysis Track 

9.3.1       Prediction Horizon 

An important aspect of our polyagent framework is the explicit reasoning about 
possible future states of the system performed collectively by the ghost populations of all 
polyagents. Each polyagent maintains a set of ghosts that each emulates the avatar's 
behavior from a set point in the recent past (hind-cast horizon) to a given point in the near 
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future (forecast horizon). A ghost's emulation of the avatar's behavior typically involves 
the probabilistic interpretation of a sub-symbolic behavioral model within a range of 
"personality" parameters. In some applications, we also apply evolutionary learning to 
the ghosts' personality parameters against observed entity behavior. 

As ghosts emulate the behavior of their avatar from the present point onwards into 
the future, they evaluate the likelihood and possible outcome of interactions of their 
avatar with other avatars in the model. This evaluation is based on state-likelihood 
information communicated among the ghosts through spatio-temporal pheromones. The 
combination of the probabilistic behavioral model and the indirect interaction of ghosts 
through a shared environment establishes a positive feedback loop that drives the model 
to convergence on a small set of the most likely future trajectories of the model, 
establishing a prediction of the future. This prediction is constantly refined and updated 
as new information enters the system. 

Observed entity state 
Ghost track 

Now(i = t) 
Time (t) 

Figure 20. Effective limit of polyagent prediction 
capability. 

As with all efforts to predict the 
future behavior of a non-linear complex 
system, our ability to look into the future 
is limited by the rapid divergence of 
possible system trajectories even under 
very similar initial conditions - popular 
known as the "butterfly effect." 
Therefore, our limited computational 
resources (computational cycles available 
to the ghosts combined with the 
complexity and uncertainty of the current 
situation determine an effective 
prediction horizon beyond which the trajectories of the individual ghosts cannot be 
combined into a meaningful prediction of likely future states. 

Figure 20 illustrates the existence of an effective prediction horizon in our 
polyagent model. We hypothesize that an analysis of the emergent ghost trajectories may 
enable a polyagent to manage the available ghost processing cycles, avoiding effort being 
invested in spatio-temporal regions of the model that are beyond our analytic capability. 

We took a first step towards such an auto-adaptive mechanism by analyzing a 
simplistic model of predictive control and demonstrating the impact of the actual 
prediction horizon on the emerging system performance. We published a paper to the 
2007 International Conference on Autonomous Agents and Multi-Agent Systems 
(AAMAS'07), describing this model and our experiments and conclusions (see 
Publications Table). 
9.3.2      Quantum-Mechanical Analogy 

We explored the empirical analogy between polyagent systems (one distinct entity 
following a swarm of probabilistic behavioral emulators interacting through fields) and a 
quantum mechanical interpretation of the world (distinct particles following a classical 
path but being the dual to waves that may interfere with other waves). In particular we 
have been studying the classical two-slit experiment that exposes the quantum- 
mechanical particle-wave duality and we started to explore the notions of interference 
and frustration driven by external circumstances and internal preferences. 
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I 

I 
Figure 21. The classical 

two-slit experiment. 

In our polyagent models, we use multiple ghosts of an 
entity to create probability fields which in turn guide the 
movement of the single avatar of the entity. Thus, abstractly, 
our polyagent models resemble the particle/wave duality known 
from Quantum Mechanics in physics. In STIFLE, we are 
exploring the possibility that this resemblance may actually 
yield formal tools or approaches from the physics domain that 
improve the design or performance of our polyagent models. 

We started our exploration of the Quantum Mechanical 
Analogy by exploring the classical two-slit experiment that 
demonstrates the particle/wave duality of electrons. In this 
experiment, a source for electrons is placed on one side of a gate with a screen that shows 
the resulting electron distribution on the other side. If the gate has only one slit, then the 
resulting distribution of the electrons on the screen is centered around the center of the 
direct particle path. But if the gate has two narrow slits, then the resulting distribution 
shows the effect of interference of the electron as a wave passing through both slits (see 
Figure 21). 

To replicate the experiment in the 
polyagent framework, we instantiated a 
simple model with one avatar at the 
location of the electron source, emitting 
ghosts with a random heading and speed 
(constrained to parameterized intervals). 
We also extended the framework to 
include obstacles (walls) at which ghosts 
are either absorbed or reflected. Thus, 
ghosts behave like replications of an 
electron particle, forming peaks along the 
classical path behind the slit(s). Figure 22 
shows a snapshot from the execution of the model in which a stream of ghosts (black 
dots) is "filtered" by a two-slit gate. 

To replicate the wave interpretation of the electron that leads to the interference 
pattern behind the two slits, we implemented a new infrastructure similar to our 
application-independent pheromone infrastructure. While the pheromone infrastructure 
supports spatial aggregation, diffusion, and evaporation of information in an 
approximation of chemical pheromone markers in social insect colonies, the "Quantum 
Wave" infrastructure will support diffusion and interaction (interference) of information 
approximating wave dynamics. 

In many applications we have been using the pheromone infrastructure to offload 
computational requirements typically associated with truth maintenance and team 
coordination from individual agents to the shared environment, thus simplifying the agent 
code. We believe that the Quantum Wave infrastructure may have unique information 
processing capabilities complementing the pheromone infrastructure that would support 
other agent tasks. 

The snapshot in Figure 22 shows an example of the Quantum Wave infrastructure 
dynamics as the avatar modulates the local "field displacement" with a sine function. The 
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Figure 23. Displacement by distance to avatar in linear 
chain of Quantum Wave cells. 

local displacement is propagated by the infrastructure dynamics and, as it reaches the 
back of the two-slit gate, leads to interference reminiscent of the interference in the two- 
slit electron experiment. 

Just like the pheromone infrastructure, the Quantum Wave infrastructure is 
composed of multiple cells that are locally linked into a graph structure. In our 
experiment in Figure 22, the graph forms a rectangular grid that is only disrupted at the 
location of the walls of the gate. Each cell in the grid may have a displacement along one 
or more independent dimensions, the equivalent to the different flavors in the pheromone 
infrastructure. Agents may sense or modulate this displacement. 

The dynamics of the 
infrastructure determine how the 
displacement of one cell influences the 
displacement of its neighbors. Many 
different update rules for the field 
displacement are possible. We have 
experimented with a few. For instance, 
the averaging rule specifies that the 
displacement of a cell at time t+1 should 
be equal to the average displacement of 
its neighbors at time t. Under such a 
regime, the amplitude of the 
displacement of any cell in a finite graph would eventually approximate a constant 
displacement modulated by one agent onto one cell. Or, if the displacement by the agent 
changes periodically, then the amplitude of displacement of other cells in a regular grid 
decreases proportionally with the distance from the agent (see Figure 23). 

The averaging rule approximates the dynamics of energy transfer in a set of 
connected heat storage bins. We have also experimented with an update rule where each 
cell is the equivalent of a pendulum, continually transferring potential to kinetic energy 
and back. In this case, we are able to approximate the actual propagation of wave fronts 
through the graph without energy loss (similar to electro-magnetic waves). 
9.3.3      Two-Bridge Problem 

In the following, we present a detailed discussion and analysis of a simple model 
("the two-bridge problem") that follows the topology of the two-slit experiments but 
created frustration and interference effects in a more agent-like fashion. While the two- 
bridge problem primarily exposes the analogy to quantum-mechanical systems and their 
analysis, it does reflect, in an abstract sense, spatial decisions similar to those that need to 
be made while emplanting an IED. 

This section will describe the simple two-bridge problem and to study the ground 
states of the system. The primary purpose is pedagogical. We will show how to frame a 
class of problems we are interested in, so that dynamics in both physical space and 
decision space are appropriately expressed. We will also show how the ground states of 
the "Hamiltonian" can result in qualitatively different outcomes depending on the values 
of the parameters, and how frustration can lead to effects which (superficially at least) 
mimic some aspects of quantum systems. 

Consider a river which can be crossed by one of two bridges (Figure 24). There 
are 2 agents (either people or platoons), represented by squares, who are positioned, one 
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Figure 24. Topology of the Two-Bridge Model. 
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at each of the two bridges as shown below. There are three possible sites to bivouac after 
crossing the bridge, represented by circles. 

Associate with each of the two 
agents a "spin", Sj(i=l,2). Each spin can 
take on one of 3 values corresponding to 
the bivouac site chosen by that agent. It 
is convenient to represent each spin as a 

complex phase, e'*' so that the three 
choices correspond to three different 
values of (f), 0, 2TT/3 and -2rc/3. Let sites 
(1,2,3) corresponds to 

<j) = ( 2TI/3, -2n/3 and 0), respectively. 
There may be different circumstances that dictate degrees of preference for the 

agents to bivouac at different locations. For example, agent 1, may be extraordinarily 
tired, and so may have a strong preference to bivouac at site 1. On the other hand, there 
may be better accommodations and supplies at site 3, so that agents will prefer to travel 
the extra distance to site 3. Also, there may be some reason why the agents prefer to 
bivouac together, regardless of the site. 

The effect of such preferences on the choice of bivouac site can be expressed by 
forming a Hamiltonian (or utility function). Minimization of the Hamiltonian amounts to 
finding the statistical ground state of the system. Under some circumstances the actual 
choice of bivouac site will minimize the Hamiltonian. In any case, analyzing the grounds 
states is a first step in understanding likely scenarios for bivouac choice and their 
sensitivity to preferences. 

We describe this system with the following Hamiltonian: 

A = -(JS, • S2 + Hx • 5, + H2 • S2) + h.c. 
Here J is a scalar, and the Hj=hj exp(i0j) are complex numbers. The Hj express 

preferences of each of the agents to choose a given site. For example, if 0i=2n/3 then 
agent 1 will prefer to bivouac at site 1, and the strength of that preference will increase 
the larger hj is. The values of 9j do not have to be limited to 27i/3, -27t/3 or 0. Suppose, 
for example that agent 1 has an equal preference to be either at site 1 or 3, but prefers not 
to be at site 2. This can be accommodated by choosing 0] = 2rc/6. By choosing different 
values of 61, we can accommodate varying relative preferences among the 3 sites. J 
expresses the degree of preference that the two agents bivouac together. If J is large and 
positive, there will be a strong preference for the two agents to bivouac in the same place. 
If J is negative, the agents will want to bivouac in different places. 

To analyze the ground state of A, it is convenient to rewrite it in the following 
form: 

A = -[J cos(^, - <f>2) + hx cos(t9, - ^,) + h2 cos(i92 - <f>2)] 

To simplify our problem, we assume symmetry in preferences between the agents. 
That is, we consider only cases in which h]=h2=h and in which 0i= -02 = 2n/3 - 8. Then 
we have 

A - -[Jcos($ -<f>2) + hcos(2;z/3-S- <j)x) + hcos(-2/r/3 + S-<f>2)] 

We now can study the minima of A for different values of J, h and 8. Here we will 
only outline the qualitative behavior of the system for different ranges of the variables. 
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2-fold degenerate 
.11. 

Classical 

9.3.3.1 5=0 
This is the case in which, if there 

is any preference of the agents for a site, 
it is for the site closest to the bridge that 
they cross (assuming that h>0). In this 
case, if h»J, then the agents will prefer 
to bivouac at the site near their respective 
bridges. We call this the classical case. If 
J»h, it will be most important to the 
agents that they bivouac together, and, if 
h is nonzero, then A will be minimized if 
the agents bivouac at either site 1 or site 
2. At this level of the analysis, there is nothing to distinguish between these two choices. 
The ground state is said to be 2-fold degenerate. The cross-over between these two 
behaviors occurs when J=h. For J>h the ground state has the two agents together at one 
site, while for J<h, the ground state corresponds to each agent forming a bivouac at the 
site nearest his bridge. This behavior is summarized in the graph in Figure 25. 
9.3.3.2 0< S< n/6 

Figure 25. Phase Plane for 5=0. 

3-fold degenerate 
J=4cos(n/6)h/3 

Classical 

Figure 26. Phase Plane for 6=rc/6. 

This qualitative behavior 
continues for small values of 8, although 
the separatrix between the classical and 
2-fold degenerate domains changes, 
taking on a gradually larger slope. (This 
may seem counterintuitive, since a small 
increase in 8 means that an agent has a 
less strong preference to bivouac near his 
bridge than if 8=0. However, when 8>0, 
there is a greater cost in having the 
distant agent bivouac near the opposite bridge. That is, [cos(47t/3)- COS(4TI/3-S)] is greater 
than [l-cos(8)] for small 8.) Figure 25 continues to describe, qualitatively, the ground 
state behaviors for 8<TI/6. When 8=n/6, the state with both agents choosing site 3 
becomes degenerate with the choices of sites 1 or 2, and so the upper region of Figure 25 
now becomes 3 state degenerate. That is, for 8=TI/6 and J sufficiently large, relative to h, 
both agents will bivouac at the same site, and will have no preference of the site. Note 
that this is the first appearance of the "quantum mechanical" solution, reminiscent of the 
two-slit diffraction experiments. The separatrix in this case is the line J=[4hcos(jt./6)]/3 or, 
roughly, J=( 1.1547)h. (Compare with the case 8=0, in which the separatrix is given by 
J=h.) This is summarized in Figure 26. 
9.3.3.3      n/6 < S< n/3 

For 8>Jt/6, and above the separatrix, the solution with both agents at site 3 has a 
lower value of A than the solution with both agents at sites 1 or 2. So this region now 
becomes purely quantum mechanical. Qualitatively, for larger values of 8, this region 
continues to be dominated by the quantum mechanical solution. The reason is that larger 
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8 expresses a greater preference by the agents for site 3 than for the site closer to their 
bridge. The slope of the separatrix is a maximum at 8=7t/6 and is approximately equal to 
1.1547. As 8 increases above rc/6, the slope of the separatrix decreases. Thus, at 5=n/6 
two important things happen. Above the separatrix, the quantum mechanical ground state 
dominates the 2 fold degenerate ground state, and the slope of the separtrix decreases. 
This is fairly interesting and probably suggests that this should be thought of as a process 
of jumping from one sheet which represents the two-fold degenerate ground state, to 
another which represents the quantum mechanical solution as we pass through 5=rc/6. 
When 8=7i/3 the slope of the separatrix is zero and the entire positive quadrant of the (J,h) 
plane is dominated by the quantum mechanical solution. This makes sense: as 8 increases, 
each agent (independent of the question of whether the agents bivouac together or not) 
increasingly prefers to bivouac at site 3, rather than at the site closest to its bridge. When 
8=7i/3, the angular separation between site 3 and the maximum of the cosine (i.e., the 
value of, say, <f>i such that 27r./3-8-<J>i=0) is equal to the corresponding angular separation 
between this value of (pi (fa) and site 1 (2). Thus, the h terms in the energy are neutral 
with respect to the agents' choice between its home site (closest to its bridge) and site 3. 
A positive value of J only reinforces this behavior, since that term expresses the 
preference to bivouac together. Thus, the unique preferred solution when 8=7t/3, for (J>0, 
h>0), is the quantum mechanical one. 
9.3.3.4     n/3 <8<2n/3 

Classical     J=4h[cos(8)-cos(27t/3-5)]/3 

Figure 27. Phase Plane for n/3>5>n/6. 

Quantum 
Note, finally, that as 8 increases , Mechanical 

beyond JI/3, the slope of the separatrix 
becomes negative with the quantum 
mechanical solution dominating above 
the separatrix, even if J<0, as shown in 
Figure 27. (Note also that for this range 
of 8, the quantum mechanical solution is 
always preferred over the 2 state 
degenerate solution.) This can be 
understood by realizing that for 
27i/3>8>7r/3 each agent prefers to bivouac at site 3 rather than at its home site. On the 
other hand, when J<0, there is a tendency for the agents to prefer to bivouac separately. 
But if h is large enough for a give J<0, the preference to bivouac at site 3 can overcome 
the interagent antipathy and the quantum mechanical solution will be the solution of 
choice. 
9.3.3.5      Remarks 

1. The modeling lesson here is that we can generate models that incorporate both 
the physical (by which term we include sociological) constraints of a system and the 
constraints implicit in the decision space. 

2. This analysis is based on a comparison of the ground state energies associated 
with different solutions. There are at least 2 ways in which the ground state energies can 
fail to provide good estimates of the solutions. 
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A. The ground state analysis can also be understood as maximizing a 
global utility function. Maximizing local utility functions may or may not lead to 
different states. This is similar to the difference between "physical" equilibria and Nash 
equilibria. 

B. The ground state analysis minimizes the global energy. In the face of 
uncertainty (e.g. if there are too many microscopic variables to follow) one may want to 
consider minimizing the free energy rather than the energy. 

3. It might be interesting to redo this problem using poly-agents. The use of poly- 
agents may bear a closer formal resemblance to a kind of path integral approach, and so 
may exhibit the diffraction analogy more clearly. If so, then it may be possible to relate 
that analogy (which is itself formally similar to the quantum mechanical diffraction 
system) to the analysis of the ground state presented here. This latter incorporates a 
formalism in which frustration can be expressed in a straight-forward way. Therefore, by 
comparing the poly-agent approach with the approach presented here, we may gain a 
better handle on the relationship between frustration and the emergence of solutions that 
have quantum-like characteristics. 

9.3.4     Theoretical Analysis 

After an initial broad exploration of possible aspects of polyagent models that 
may be amenable to formal analysis, we settled on a promising subset and started to 
identify promising techniques and approaches. We continued our investigation of the 
effect the polyagents' prediction horizon has on the performance of the system, and we 
started to develop an extension of the pheromone model to encode aspects of the 
predicted agent state in addition to information about spatial presence in pheromone 
fields. 
9.3.4.1      Rationalizing the Research Agenda 

The motivation behind pursuing the "Model Analysis" track in the STIFLE 
project is that we need robust, formal underpinnings to engineer predictive polyagent 
models reliably and to extract useful insights from them. In our models, we assign a 
polyagent to a domain entity. The domain entity may be known (with full or partial 
information), or may be hypothesized (e.g., number and location of specific IEDs during 
production). Each polyagent comprises two kinds of software agents - a single avatar 
which manages the record of the known entity history and potentially a single predicted 
future, and a population of ghosts that perform distributed probabilistic reasoning about 
the past (e.g., model fitting) and possible futures (e.g., behavioral extrapolation) on behalf 
of the avatar. Ghosts and avatars use digital pheromone fields to build up knowledge 
(learning) and to exchange information among each other (communication). We are 
studying the underlying structure of the agent and field aspects of our unique modeling 
construct. 

9.3.4.1.1      Agents Exploring and Exploiting Multiple Futures 
In predictive polyagent models, avatars issue a stream of ghosts that sample 

multiple futures for their associated entity. On the one hand, the multiplicity of these 
futures is derived from possible variations of internal parameters of the ghosts' behavioral 
models (e.g., What would my future look like if I behaved like this...?). On the other hand, 
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probabilistic estimates of the outcome of interactions with the environment of the entity, 
including other entities, may result in alternative futures. 

In STIFLE's analysis track, we seek to understand in detail the relationship 
between the multitude of future paths explored by the ghosts in a polyagent and the actual 
trajectory that the avatar derives from the ghosts' feedback. Producing a formal 
understanding of this relationship, we allow us to determine the appropriate number of 
ghosts that need to be generated to produce a sufficient sample of future trajectories, 
thereby ensuring statistical significance while avoiding excessive computation (wasted 
processing cycles). 

Furthermore, based on an understanding of the ghost-avatar path relationship, we 
will be able to select the most appropriate mechanism for the avatars to exploit the 
information gathered by their ghosts along different trajectories. For instance, under 
different circumstances the avatars might consider just the aggregated pheromone fields, 
analyze detailed ghost trajectories, or let ghosts compete and then follow the most 
successful one. The structure of the relationship between an avatar and its ghosts strongly 
suggests the possible applicability of a least-action formulation of the problem. We are 
exploring this and other formal methods to address these questions. 

9.3.4.1.2     Field-Based Reasoning Mechanisms 
Ghosts manipulate digital pheromone fields that are distributed over a given 

topology to emulate entity interactions between ghosts of different avatars, communicate 
performance estimates among ghosts of the same avatar, or guide their respective avatars 
in their decision processes. Our analysis track seeks to determine criteria for the selection 
of the most appropriate set of fundamental dynamics that govern the pheromone fields. 
For instance, to what extent should pheromone fields partake of heat-like (diffusion) 
dynamics or wave-like dynamics, in which there is the possibility of interference? 

The selection of the appropriate field dynamics in a particular polyagent model is 
important for several reasons: 

• We need to maintain structures and patterns within the pheromone fields that 
provide useful information to the agents. 

We need to develop mechanisms that avoid "muddying the waters" as more 
pheromones are deposited by the agents. To this end, it may be appropriate to 
develop more refined cancellation mechanisms for information carried by the 
pheromones than just evaporation (time-based cancellation). 

• We need to develop a better understanding of pheromone aggregation 
mechanisms. In particular, pheromone fields may not be additive. If the same 
event that is encoded in a pheromone deposit occurs twice, the pheromone 
aggregation should not necessarily just be doubled, since the occurrence of two 
events may indicate an even greater probability. 

One possible approach to these challenges with which we are experimenting is the 
use of complex-valued pheromone fields to support more complex interactions. 

9.3.4.1.3     Agents vs. Fields - Applying the Appropriate Reasoning Paradigm 
Our algorithms link the behavior of avatars and the pheromone fields which they 

generate and sense (with the help of their ghosts). The emergent dynamics of this 
relationship inevitably lead to a distribution of information about the system across the 
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two aspects. We know from experience that for some reasoning processes (e.g., discrete 
representation of intentions or goals), an entity-based model centered around the software 
agent of the avatar is more tractable and effective. For others (e.g., probabilistic 
emulation of engagements), we have found it more effective to evolve probability fields 
(encoded as digital pheromones) through successive ghost populations that perform 
Monte-Carlo samples of alternative possible behaviors. 

Our analysis track seeks a formal understanding of these dynamics and the 
relations between the two aspects that they imply, so as to construct, control, and analyze 
our models in a more principled way. 

• In constructing a model, these insights will guide us in deciding (for example) 
whether ghosts should simply report alternative independent futures to their 
avatar (using agent-to-agent messages) or feed information back to one another 
(through their pheromone fields). 

• In controlling a model, these insights will (for example) enable the system 
itself to decide in real time when an avatar has learned all that it can from the 
fields its ghosts have generated, so that it should take a discrete action as an 
entity and begin the cycle of ghost exploration anew (or invoke alternative 
reasoning mechanisms). 

• In analyzing the output of a model, these insights will guide us to the aspect of 
the system (entities vs. fields) most likely to contain the information of interest 
to answer a particular question that we pose. 

9.3.4.1.4 Large-Scale System Dynamics 
Whether represented by agents, fields, or both, our predictive polyagent models 

include a large number of active real-world entities interacting in and with a complex 
geo-spatial and sometimes cultural environment which changes dynamically over time. 
Such segments of the real world are often rife with complex constraints and (implicit) 
utility functions that easily result in frustration of one or more entity preferences at any 
given time. The potential impact of frustration on the emergent system-level dynamics 
can be observed in much simpler systems (for example, spin-glass systems). 

Our analysis track seeks to develop a formal understanding of the emergence and 
evolution of frustration in the underlying decision processes of polyagent systems. Such 
an understanding will support the analysis of our predictive model. In particular, it will 
help explaining some of the large-scale effects we see in our predictions. Furthermore, it 
will improve our decision support function, as we can then develop execution strategies 
for over-constrained systems, where agents face multiple inherently incompatible 
objectives, to propose useful actions in the face of high levels of noise or limited, partial 
information. 

9.3.4.1.5 Diffusion Models and Prediction Horizons 
Prediction is at the heart of polyagent models. Consequently, a central question in 

polyagent and related models is the question of the best prediction horizon. As we predict 
farther into the future, we open up a broader range of strategic possibilities. On the other 
hand, we expect that far future predictions are generically less reliable. One might 
suppose that predictions at some intermediate value carry the best combination of 
quantity and reliability of information. What is the structure of information gleaned at 
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various prediction horizons, and can we deduce general principles that will guide us to 
the best choice. 

Previously, we had analyzed a polyagent model of "Cowards and Rambos" 
engaged in a complex pursuit game on a toroidal arena. As we reported in our publication 
at the AAMAS'07 conference (see "Publications" table below), we were able to observe 
the effect of the extent of the Cowards' prediction horizon on their ability to avoid being 
chased down by the Rambos. Qualitatively, the Cowards perform very badly with a short 
horizon, then quickly gain significant improvements as their horizons expand, only to 
lose those gains gradually, as we kept increasing the horizon even further. While our 
extensive simulations of this model showed the existence of a "sweet spot" in the 
polyagents' prediction horizon, the complexity of the model prevented us from 
completing any formal analysis of the main drivers for these dynamics or rules for 
estimating the parameters that put the model at the "sweet spot" for a given configuration. 
Therefore, in this period of performance, we moved to a simpler model, which 
nonetheless captures the essential dynamics. 

We start out with the most simple polyagent model possible. The model has one 
polyagent on a 2D landscape, frozen in real time (no avatar decisions needed), issuing a 
continuous stream of randomly walking ghosts. Each ghost executes a fixed number of 
decision steps until it reaches the polyagent's prediction horizon. Starting at the location 
of the avatar, in each step the ghost moves a fixed distance in a randomly selected 
direction. It also deposits a fixed amount of pheromone at a node of a rectangular lattice 
(Pheromone Infrastructure Place) that covers its current location on the continuous 
landscape. The deposit is tagged with the current offset of the ghost's simulated time 
relative to the origin of the avatar's time. Therefore, two ghosts that arrive at the same 
spatial location but after a different number of decision steps will deposit pheromones 
into different "time buckets" and will not be able to sense or influence each other. 

We implemented this model and executed the simulation long enough that a 
sufficient number of ghosts were able to complete their run from the present time (frozen 
avatar time) to the future prediction horizon. At the end of the simulation, we extract the 
resulting pheromone concentrations at all Pheromone Infrastructure Places and for all 
time offsets visited by the ghosts. From that data, we extract spatial pheromone fields for 
each time offset. 

Because of the specific dynamics of the Pheromone Infrastructure that we chose 
for this experiment (fixed evaporation process, propagation of pheromones disabled), we 
find that the concentrations across a field for a given time offset are proportional to the 
probability that a randomly moving avatar would be found inside a given Place after the 
number of steps indicated by the time offset of the field. 
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Figure 28. Logarithm of the pheromone concentrations across a spatial field with fixed time offset. 

Figure 28 shows plots of the various spatial pheromone fields out to a time offset 
of 23 steps. We normalized each field such that the sum of all concentrations adds up to 
one and each normalized concentration represents the probability to encounter a 
randomly walking avatar at this space-time coordinate. For our graphics, we plot the 
logarithm of this probability across the space visited by the ghosts. Not surprisingly, as 
we go more steps into the future, our ability to pinpoint a randomly walking avatar 
diminishes (the field spreads wider). But the shape of the logarithmic plot immediately 
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exposes the similarity with diffusion processes, which leads us to the following formal 
analysis of the model. 

9.3.4.1.5.1      Discussion of the Formal Analysis 
The model described above can be thought of as a random walk approximation to 

a diffusion process. Although a simple random walk (or diffusion) model is 
excruciatingly simple, our analysis points the way to some interesting conclusions about 
optimal prediction horizons, the fundamental dynamics that underlie them, and some 
possible unexpected emergent consequences of those dynamics. The only potential 
complication in our analysis comes from the existence of pheromone evaporation, but 
will show below that this is not an essential complication 

Pheromone density can almost be considered a measure of the probability that a 
ghost is at some position, r, at time, t. The existence of evaporation mitigates this 
interpretation. To make the correspondence with probability of ghost position complete, 
we should have no evaporation. We would then simply renormalize the pheromone 
density so that the integral of the pheromone density was always one at each time step. 
This renormalized pheromone density without evaporation could be taken as the 
probability of ghost position as a function of time. 

There is a close correspondence between random walks and diffusion processes 
that we will exploit. Before continuing, though, it is important to remember that it is the 
ghosts that are executing a random walk. Therefore, strictly speaking, we should apply 
the diffusion equation to the ghosts, not the pheromones. In this model, the pheromones 
don't diffuse. However, because the ghosts lay down pheromones at each time step, the 
pheromone field is a trace of their routes (for the moment, we ignore evaporation), and 
therefore we can consider that the diffusion process applies to the pheromones. Note, that 
this may not be the case in other realizations of the relationship between pheromones and 
ghosts. 

It is well known that a random walk process can be described by the diffusion 
equation. Here we will sketch the relationship. We will not derive the diffusion equation 
in detail. There are many extant derivations of it, and for our purposes we don't need all 
the details. 

In any case, ignoring for the moment evaporation, the diffusion equation is 

^ = DV>u 
dt 

Where u is the pheromone density and V2 = V  —- is the gradient operator in 
dx, 

d dimensions. The solution to this equation is 
1 

where r2 is understood to be the vector magnitude of the position. 
The scale for diffusion is set by the value of D, the diffusion parameter. It is 

worthwhile seeing, at least roughly, how that is related to a random walk on a lattice. It is 
straightforward to show (see, for example, F. Reif, Fundamentals of Statistical and 
Thermal Physics (McGraw-Hill, 1965)) that the diffusion constant is, roughly, related to 
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a random walk process in which molecules suffer random collisions by D « —vl , 

where v is a measure of the average velocity of the random walker, and / is the distance 
between collisions. In our case, assuming that the lattice spacing is set to one, and the 
ghost time step is defined as one, D « 1 / 2, in two dimensions. 

Estimate for the prediction horizon: What do we want for a good prediction 
horizon? Suppose we have avatar A seeking to predict the position of avatar B. Suppose 
further that the ghosts of avatar A can sense the pheromones laid down by the ghosts of 
avatar B. Then, the prediction horizon, T, will be reasonable if two conditions are met. 1. 
Avatar A must have a reasonable probability of having ghosts in the region where avatar 
B may be, at time T in the future, and 2. the pheromone field of avatar B (or of it's 
ghosts) at time T in the future should have some significant structure so that the ghosts of 
avatar A can sense privileged regions or directions associated with the (future) position of 
avatar B. From the solution, it is clear that for a fixed time, dependence of the probability 
distribution is governed by the exponent. If r2/4Dt » 1, there is only a small probability 
of finding a ghost (or substantial pheromone field density associated with those ghosts). 
If r /4Dt « 1 there is a good chance of finding a ghost, and, the pheromone field, while 
varying with distance, does not vary dramatically. When r2/4Dt is on the order of 1, there 
is both a significant chance of finding a ghost, as well as fairly rapid variation in the 
pheromone field. Now, return again to the problem of ghosts from avatar A wanting to 
predict the position of avatar B. Suppose that the ghosts from both avatars are driven by 
the same (random walk) dynamics and lay down pheromones in the same way. Suppose 
that the typical inter-avatar distance at some time T is S. Then, if we choose a prediction 
horizon, T, such that S2/4DT -0(1), we will satisfy both conditions for a good prediction 
horizon. At a distance of about S (or S/2) from avatar A, there will be a reasonable 
probability of finding ghosts from avatar A. At a distance of about S (or S/2) from avatar 
B the pheromone field from the ghosts of avatar B will have a reasonable spatial gradient 
allowing the ghosts from avatar A to make reasonable directional judgments about the 
position of avatar A. In fact, it can easily be shown that the radial gradient of the 
pheromone field is maximal when rmax =2Dt. Setting t=T=S2/4D, we have 
rmax2=2DT=S2/2, so that, the maximum gradient occurs in the region which the ghosts 
will typically sample (i.e. the average inter-avatar distance), given our estimate for the 
optimal prediction horizon.. Intuitively, this is easy to see. This value of T is about the 
time when the cloud of ghosts (and their attendant pheromone fields) from the two 
avatars begin to touch each other without excessive overlap. 

The addition of evaporation: From the point of view of the diffusion equation, 
we can add evaporation by modifying the diffusion equation as follows: 

dU P.V7 2 — = D V u- cm 
dt 

where p controls the evaporation rate. Either by inspection, direct substitution or 
by separation of variables, it is straightforward to see that the solution to the diffusion 
equation is easily modified to take the evaporation term into account. The result is 

1 
"(r'') = 7 y7Texp(-r2 /4Df)exp(-pf) 



ONR C-IED STIFLE Final Report 

The effect of evaporation in this model is only a multiplicative term that depends 
only on t. In particular, the spatial variation of u at a fixed time is not affected by 
evaporation. Therefore, evaporation won't change the estimate of the optimal prediction 
horizon. Evaporation only affects the relative scale of the size of u at different times, and 
effect that does not enter into our estimate of prediction horizon. 

Speculations on the emergent structure of prediction horizons: Based on our 
considerations of the random walk problem above, and our preliminary results on the 
Rambo-Coward game, we expect that a general feature of prediction in polyagent and 
related systems is the existence of a small range of best prediction horizons. In general, 
predictions over short horizons provide little information, while predictions over long 
horizons are greatly degraded and noisy. We saw this effect explicitly in the Rambo- 
Coward game, and some thought shows that the same pattern will emerge in the simple 
random walk model above. The question is, how generic is this behavior and what is its 
nature. One possibility, which we are exploring, is that the "sweet spot" in a game with 
nontrivial dynamics, will lead to emergent behavior reminiscent of the Minority Game. In 
that game, the role of prediction horizon is played by a variable that carries with it the 
amount of information agents use to make decisions. As a function of that variable, there 
is a phase transition which occurs at the value of the information which is optimal for 
system performance. The two phases separated by this transition in the Minority Game 
have characteristics reminiscent of the very short and very long prediction horizons in the 
Rambo-Coward and random walk models. 

9.3.4.1.6     Phased Pheromone Fields 
Current implementations of digital pheromones represent each flavor as a scalar. 

One consequence of this convention is that while pheromone aggregation is local (at the 
point of deposit), attenuation can only be done globally (by evaporation, which affects all 
places in the pheromone landscape indiscriminately). This asymmetry leads us to inquire 
whether we can design a local attenuation mechanism, analogous to interference in a 
wave system. This might be achieved by representing pheromones as complex numbers, 
with both amplitude and phase. 

Interfering pheromones could be useful in representing certain decision situations, 
in which the presence of multiple options leads to an outcome different from what would 
emerge in the presence of only a single option. Sometimes consideration of multiple 
options leads a human reasoner to conceive of a new option that combines features of 
previously articulated options, in effect making a decision that is "in between" the earlier 
options in the decision space. 

The implementation of a phased pheromone is straightforward. It simply consists 
of two scalar pheromones, which are interpreted as the real and complex components of 
the phased pheromone. The vector addition rules for complex numbers mean that 
aggregating and evaporating the real and complex components individually results in the 
correct behavior for the pair. The innovation is in requiring the agents to deposit and 
sense the pair as a pair. 

We explored the operation of complex-valued pheromones in the context of a 
military example. Consider a dispersed company of marines who are moving eastward. 
They need to cross a river, and after making the crossing, they will want to bivouac 
together. Subject to these constraints, they want to make progress eastward. We wish to 
implement this coordination without direct communication among the marines. 
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If there is only one bridge, they will naturally rendezvous at a bivouac due east of 
the bridge. However, if there are two bridges, rapid movement of the force suggests that 
the marines should divide the load between them, and in this case the best bivouac is not 
due east of either bridge, but at a point midway between them. The coordination 
mechanism should a) guide the marine toward one or the other bridge, dividing the 
marines between the bridges in roughly equal numbers, and then b) lead them back to a 
bivouac midway between the bridges. 

The first coordination problem, dividing the marines between the two bridges, is 
straightforward and requires only scalar pheromones. It uses the standard ant routing 
algorithm, in which the ghosts deposit "home" pheromone as they move away from the 
avatar, then once they have found the target, deposit "target" pheromone as they climb 
the home pheromone gradient back to the avatar. Under this algorithm, when the avatar is 
far from the river and equidistant from the bridges, ghosts will initially form paths across 
both bridges, but stochastic effects will break the symmetry between the paths. One path 
will be slightly stronger than the other, and as the avatar draws closer to one of the 
bridges, its ghosts will tend to cross the closer bridge, reinforcing the path over that 
bridge and leaving the avatar to that choice. Since the stochastic effects vary from one 
agent to the next, the avatars will be distributed over the two bridges. The proportion of 
distribution will depend on the environment. If the environment does not favor one bridge 
over the other, the avatars will be roughly equally divided. If there is an environmental 
constraint (say, heavy foliage in front of one bridge that slows the passage of ghosts), 
more avatars will follow the easier route and fewer will select the more difficult one. 

To solve the second coordination problem (converging on a bivouac midway 
between the bridges), we use a phased pheromone. The phase of the pheromone that is 
deposited is initially 0 when the ghost leaves the avatar. It then shifts either to 2rc/3 after 
the ghost traverses the north bridge or 4n/3 after it traverses the south bridge. Ghosts 
modulate their deposit of pheromone based on the phase of the pheromone already 
deposited at the location (defined by the vector sum of the deposits so far). Ghosts 
deposit more pheromone the closer the phase is to n. Thus ghosts who encounter 
pheromone deposited mainly by other ghosts who crossed the same bridge that they 
crossed will deposit less pheromone than ghosts who encounter pheromone deposited by 
ghosts from both bridges, resulting in a pheromone peak between the two bridges on the 
east side of the river. In turn, the avatar follows the gradient of the magnitude of this 
pheromone to find its way to the peak. 

9.3.5      Walker Models 

To further extend our model analysis, we focused on the analysis of simple 
polyagent systems that, in their basic nature, share common mechanisms with those used 
in the IED prediction prototype. Specifically, we looked at populations of avatars that 
seek to cluster or homogenize in a given space. We use similar mechanisms of attraction 
and repulsion to integrate the motivational model of the insurgents in our prototype with 
the actions of Blue and the constraints of the geo-cultural landscape. 

We developed and analyzed two related models. The "Probabilistic Walker 
Model" deploys ghosts to establish and sample predictive pheromone fields around the 
avatars, who then use the feedback from the ghosts to move closer to (clustering) or away 
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from (homogenizing) other avatars. The "Mean-Field Walker Model" abstracts away 
from the variability introduced by finite populations of ghosts and has the avatars make 
their movement decisions based on estimated fields that would be established and 
sampled "in the mean" by an infinite number of ghosts. 
9.3.5.1      The Probabilistic Walker Model 

In these experiments, two avatars 
start out separated by a distance, S, and 
try to move closer to one another. At the 
start of execution, both avatars send out 
15 ghosts. The ghosts walk randomly, 
depositing pheromone and sensing the 
other avatar's pheromone. After N steps, 
the ghosts who see pheromone from the 
other avatar at their current location 
report back to their avatar. The avatar 
sums the vectors from itself to the 
reporting ghosts, and takes a step in the 
resulting direction. If no ghosts report 
back, or if the vector sum is zero, the 
avatar does not move. This cycle is 
repeated until the two avatars meet. The number of cycles until the avatar meets is 
recorded and plotted versus N, the number of ghost steps per cycle. 

The number of cycles it takes the avatars to meet (to attain their goal) is the 
measure of performance of this system. The number of steps the ghosts take each cycle 
represents the prediction horizon, or amount of "look ahead" the avatars use in their 
decision process. The result expected is that there is an optimum prediction horizon. If 
the ghosts take too few steps, they are unlikely to randomly stumble across pheromone 
from the other avatar's ghosts, providing little information to the avatar, causing many 

cycles to pass before the avatars will meet. 
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 Ortost Steps Par Aretar step 

Figure 29. Avatar steps vs. ghost steps per avatar 
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If the ghosts take too many steps, the field 
of possible ghost interaction expands and 
overlaps, so the avatars are more likely to 
take steps in an erroneous direction, thus 
causing an increase in the number of 
cycles. Figure 29 shows the results of this 
experiment with N ranging from 8 to 100. 
Each run with a different N was repeated 
10 times. The mean value for number of 
cycles is plotted with error bars indicating 
+/- one standard deviation. The plot 
shows the expected results: poor 
performance with N set below 10, 

maximal performance in the middle range, and degraded performance as N gets larger. In 
the region as N gets larger, the mean value of number of cycles stays relatively flat, but 
the variance over multiple runs increases, which indicates that poorer performance is 
more likely than in the middle range. 

mr* 
Figure 30. Avatar cycles vs. k 
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In these experiments, as the avatars get closer to one another there is an increasing 
overlap of the sensing ranges of the avatars, thereby effectively increasing the number of 
ghost steps per cycle. To eliminate this effect, the experiment was modified. The number 
of ghost steps per cycle was modulated by the inter-avatar distance. The number of steps 
at each cycle was set to k*S2/8, where k is now the independent variable. The experiment 
was run with k varied from 1 to 250. Figure 30 shows the results of this experiment with 
number of cycles plotted versus the modulation factor, k. This shows a result similar to 
above, but with the performance more clearly degraded as k runs out into the hundreds. 
9.3.5.2      The Mean-Field Walker Model 

As we found in our simulation experiments discussed in the previous section, the 
emerging dynamics of the Probabilistic Walker Model depend on how far the ghosts run 
out into the "future" (length of random walk). What we did not explore experimentally, is 
the dependence on the number of ghosts sent out per avatar-decision-step. It is intuitively 
clear that if there are only a few ghosts, then the pheromone fields and "sensing" events 
that guide the avatars are very dependent on the random trajectory of individual ghosts 
rather than the aggregated behavior of the ghost population. To remove this effect from 
the analysis of the prediction horizon, we considered the following mean-field abstraction 
of the Probabilistic Walker Model. 

9.3.5.2.1 Abstraction 1: Circular Pheromone Fields 
The ghosts of an avatar perform an N-step random walk starting from the current 

location of the avatar on the map. In each step, the ghost deposits a fixed amount of a 
pheromone identifying the avatar. In the unlikely event that all N steps of a ghost are 
headed into the same direction (straight line) the ghost would end up at a distance of 
N*stepLength away from the avatar. Of course, most ghosts will end up less than this 
maximum distance away from the avatar. 

If we assume that the avatar releases an infinite number of ghosts, then we can 
assume that their N-step random walks will result in non-zero pheromone concentrations 
in a circular field of radius N*stepLength. Thus, for a "mean-field" approximation of the 
Probabilistic Walker Model, we can assume that ghosts would sense pheromones from 
another avatar up to a fixed radius away from the avatar. Note that at this point we are not 
making any assumption about the concentration of the pheromone in this circular field. 

Conclusion: We assume the presence of pheromone concentrations at a fixed 
radius around an avatar without using ghosts to generate this circular "announcement" 
field. 

9.3.5.2.2 Abstraction 2: Circular Sensing Fields 
As in abstraction one, we can assume that an infinite number of ghosts will 

sample the presence of pheromone concentrations at all locations within the fixed radius 
of N*stepLength around their avatar. Therefore, the avatar will have complete knowledge 
of the distribution of pheromone concentrations from other avatars within this "sensing 
radius" without actually deploying ghosts. 

Conclusion: We assume the ability of an avatar to sense other avatars' fields if 
they are within the fixed radius of the "sensing" field. 
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9.3.5.2.3     Abstraction 3: Avatar Move by Angular Probability Distribution 

After abstraction one and two, we no 
longer have ghosts in our model. Rather, there 
are only agents (former avatars) that are able to 
sense the presence of other agents if the 
"announcement" field of one agent overlaps with 
the "sensing" field of the other. So, in Figure 31, 
Agent B's sensing field overlaps with Agent A's 
announcement field and therefore, we assume 
that Agent B senses the presence of Agent A. 

Figure 32. Agent B is guided by an angular 
probability distribution. 

• Agent B 

sensing 
field 

Figure 31. Agent B is able to sense Agent A 
because their fields overlap. 

In our Probabilistic Walker Model, we 
used the sampling process of a finite number of 
ghosts performing random walks around their 
avatar to determine the direction for the next step 
of the avatar. This process has a strong noise 
component as ghosts from avatar A would 
deposit pheromones not only along the direct 
path to avatar B, but anywhere in the circular 
area of the announcement field and, within the 
overlap of the sensing field, ghosts from avatar 
B would encounter these deposits. To model this 

noise component, we need to specify an angular movement probability distribution as a 
function of the overlap of the announcement field with the sensing field. 

Conclusion: In each step, an agent calculates a probability distribution over all 
possible angles (0-2Pi) that is dependent on the overlap of its sensing field with the 
announcement fields of other agents. The agent then samples this probability distribution 
to determine the direction of its next fixed-length step. 

9.3.5.2.4      Field-Overlap Probabilities 

For our "Mean-Field" approximation of the Probabilistic Walker Model, we need 
to describe the angular probability distribution that derives from the overlap of an agent's 
sensing field with another agent's announcement field. For now we assume that the 
radius of the sensing field is equal to the radius of the announcement field. The "shape" 
of this overlap is a function of the distance of the agents: 

1) If the agents are too far away, then the fields don't overlap and the angular 
probability distribution is uniform (agent performs random walk). Otherwise, the 
probabilities are non-uniform and, in particular, the heading angle pointing 
directly towards the other agent will always have the highest probability (except 
in the case of zero distance). 

2) If the agents are more than one field radius away from each other (as in Figure 
31), then all angles pointing away from the other agent have zero probabilities. 
Furthermore, depending on the actual distance of the agents, some of the angles 
that would still move the agents closer to each other (but not along the direct 
path) also have zero probabilities. 
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3) 

4) 

If the agents are less than one field 
radius away from each other, then the 
announcement field of agent A actually 
covers the location of agent B and even 
reaches behind it. In this case, the 
angular probabilities are all non-zero, 
which means that the agent has a non- 
zero probability to actually move away 
from the other agent. 

If the   agents   share   the 

Figure 33. Calculating the portion of overlap for 
a given angle. 

agents   share   the   exact   same 
location, then all angles are of equal selection probability. 

Based on these observations, we defined the following geometric method to 
calculate the probability distribution. For any angle (a) around agent B, consider the line 
that connects the agent's location with the edge of its sensing radius in the direction of 
the angle. Then determine the length m(a) of the portion of the line that is overlapped by 
the announcement field of agent A - this portion may be zero. Let s(a) denote the relative 
length of m(a) compared to the radius of the field (s(a)=m(a)/r). Finally, the probability 
p(a) for agent B to move in direction a is s(a) normalized for all possible angles. 

Figure 34 shows the relative degree of overlap (s(a)) for all angles as a function of 
the distance of two agents with a field radius of 10. When the distance is exactly twice 
the field radius (20), there is only one direction that has non-zero overlap. As the distance 
shrinks, the range of angles with non-zero overlap widens until, at a distance equal to the 
field radius, suddenly all angles report non-zero announcement field presence. 

As we normalize these s(a)-va\ues for all 
possible angles (Figure 35), we find that the 
widening of the range of available angles 
quickly leads to a "dilution" of the guidance 
provided by the field. In other words, the 
likelihood for agent B to move directly towards 
agent A is diminishing rapidly. 

9.3.5.2.5      Initial Experiment 
Step Length - 0 01. Mean over 10 Replica 

: 
2 
3   IfMMI 

 - ' Jf >,  „*V • -\_ 

Sensing Radius 

Figure 36. Probabilities derived from 
normalization of s(a). 

Circle Intersection Selection Probabilities 

Figure 35. Probabilities derived from 
normalization of s(a). 

We executed an initial experiment with 
the Mean-Field Walker Model, where we 
systematically varied the field radius of the 
agents. Figure 36 shows the time it takes two 

Circle Intersection Probabilities 

Figure 34. Degree of field overlap for two agents. 
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agents to meet (mean over ten replications with different random seeds) for a fixed agent 
step length (0.01) and varying sensing radius. As in the Probabilistic Walker Model 
(Figure 29), the performance peaks (time to meet dips) at an optimal sensing radius. For 
smaller radii, the agents take too long to get "in range" (detect each other's field), while 
for larger radii, the agents are confused by the significant overlap of their fields. 
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